Web Page Indexing: TF-IDF

Problem- Definition

Eul Chubengas

Ve Tear s

Frwr a0 b

BT Lo P

Curb g o an Eewnart vy

s A

TP o 2 e [CIEETIe
] ekt

Vector Space Model

e e

Web Page Indexing: TF-IDF

Problem- Definition

It ram

Susn Ty

P T——

e e e

e

Ranked Retrieval

g

Care L U i e

P L L
=)

RETHRT

[DEEERE

PRt

teeehn B s

B]

Web Page Indexing: TF-IDF

Problem- Definition

ictanary - Desrud B85 Dictionary - Desined 05

Firal Challenges

e v or. . Dot 05

St o tha Dkt

a i

- Wep e o i g

I d i
i e
w2 b Qe Uizger ol eesians tan't beild e matix Inverked index reeried lviz Inecctadirecs castrucian Inlkal stages o text procnssing Indeser stepe: Ioken seciercs
R e v e st A RETTepeT 2 prmge anc e e E
et e e B ro
= e e radkn ke 24 T L - i

Vs e e ot
e e

1 evm rheb 0 ST e

& Tezhinzs

Izche me SIaa

* Tornavzite o b FrTes
Vi n e | bk

Mules of Bramb Corminnabian schemes

Fruvssang 2 phrass coery

v 2 Psiliveal ideees

brsinees

Lomzer ot quer ey
arvace e e e e kel
s om, ool

o caper:

e

© Poinm peabtovs, v rorms brlae
P RN TR B ——

e P

rarkeg e carn

Information Retrieval (IR) - The Problem

Collection: A set of

C documents Assume it is a
, M MStatic collection for the

L1 - ‘|I!|g-r*q||| moment

““““ I-l“ %Goal: Retrieve documents
B[M with information that is
““““ |-|}r~ A relevant to the user’s
e information need and helps
the user complete a task

Searching is a Solved Problem!

Hash Table: O(1)
Binary Search Tree: O(log(n))
AVL Tree: O(log(n))

Why Do we need a different setup?

<

Size of the Data!

- 10 billion web pages

- Average size of webpage = 20KB

- 10 billion * 20KB = 200 TB

- Disk read bandwidth = 50 MB/sec

- Time to read = 4 million seconds = 46+ days

- Say there are M = 500K distinct terms among these.
- Even longer to do something useful with the data

Dictionary - Desired DS

A naive dictionary

* An array of struct:

term document pointer to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 S
char[20] int Postings *

20 bytes 4/8 bytes 4/8 bytes
* How do we store a dictionary in memory efficiently?
* How do we quickly look up elements at query time?

Dictionary - Desired DS

Dictionary data structures

= Two main choices:
= Hashtables
" Trees

Hashtables

= Each vocabulary term is hashed to an integer
* (We assume you’ve seen hashtables before)

®" Pros:
* Lookup is faster than for a tree: O(1)

= Cons:

= No easy way to find minor variants:
* judgment/judgement

* No prefix search [tolerant retrieval]

= |f vocabulary keeps growing, need to occasionally do the
expensive operation of rehashing everything

Tree: binary tree

|» 0
a-m @ n-Z

a-hu hy-m n-sh Si-z

AR AR

& @ @ +
Ly o ~ 8

4 7] &

S o (9) A
e N ~ N
Ay)]

:P’ <

Trees

= Simplest: binary tree
= More usual: B-trees

= Trees require a standard ordering of characters and hence
strings ... but we typically have one

" Pros:
= Solves the prefix problem (terms starting with hyp)
* Cons:
= Slower: O(log M) [and this requires balanced tree]
= Rebalancing binary trees is expensive

* But B-trees mitigate the rebalancing problem

Real Challenges

Out-of-Vocabulary Words
20-25% Named Entities
Multilingual Queries
Wild Card Queries
Spell Correction
Phrase Search
President of India

-

g st

Lo

b e e
e

R
+ e s A b ke

e L]
o

= 3eprEa = vy

duy

Skl w sl

Eauthingie s Sabwed Preblery

e ke

. Toow G

et e e
tab i s o B,
Lorhnaine]

we
© e e e b ey
Tl o v, o e
[

-3 hisny

b i Bo e seard::

Web Page Indexing: TF-IDF

Problem- Definition

Stm o the Dt

Dictivhary « Desirod DS

Tree: inary
A nawe denarary

CE TR T

EgR=" coilectons Irazred iz Iruered vl senstrazbon

L

* Comen melind e
SR

e s b,
vrwa g el

—sGaddn v e g
© Sap v e e S

[rem—

& et Whae i we

warspet

Aery [ssing: SO L e ting 0 POt nEs 15

1= gt

S * Cxrtkdar 3acming the e

e 2: Fesitoos) indiaes

weannpli sresmity quer

Fasitivmalinee: vz

TR AT A I e
ik e o

2P arant .
* e e dwwarce 11 wonoge dor e s g

5
P
LB 13 T R e

ek
earer v, . o A
© Sarn g TR sy e

Farkiay e

anked Retrieval

Farkad o doval medels Query dATUmErs matchlg scarcs.

Take 12 lagcard

el i

© e urbe s ire e oo rhat
R p— o ot

B L LTt & zemerkse T,
3 e e Bl

- s
[

* AL B D

© v et e eIt e o

3 WA B TRV S

P iz b e

Leg Fequency wela tng Dacument TeRLEncy

It eampl 5

o = milicn

el wgn el

* Tava e e o Dok 1 e 118 R e e T
' . Iromsh ke et L

Irital stages of toi prazcising

Filew af Ly

§ ey b 3R T
= "

- S e o

st o6 with Jaczsed to secedng

© e
)

v s rany

v T
e T

=eul
D e T T e]
TR m o 1)

N et ek A
| s

Firal v o disominnts T g

P ——.

Srarn e
b

=a
§ I uenoanec

4w
- e

& Tl alleenal i

B T S A

© Dwnaftbie b 1rze sbchasy
- T U rae T i
L

Lumbirabon s
T e st ¢

e ouay ke k™ e
i

oy s
Iddzemes s

T R LT

. Secament freguency

PRy R
17k T s

e
T
== . e

Index Creation
Query
Terms

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth DO CS
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains
word, O otherwise

Incidence vectors

 So we have a 0/1 vector for each term.

* To answer query: take the vectors for Brutus,
Caesar and Calpurnia (complemented) =
bitwise AND.

— 110100 AND

— 1 1 O 1 1 1 A N[Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
— 101111 o Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
— 100 100 mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Answers to query

» Antony and Cleopatra, Act lll, Scene i

Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

 Hamlet, Act lll, Scene I

Lord Polonius: | did enact Julius Caesar | was killed i’ the
Capitol; Brutus killed me.

Bigger collections

 Consider N =1 million documents, each with
about 1000 words.

* Avg 6 bytes/word including spaces/
punctuation
— 6GB of data in the documents.

e Say there are M = 500K distinct terms among
these.

Can’t build the matrix

e 500K x 1M matrix has half-a-trillion O’s and
1’s.

<=

e But it has no more than one billion 1’s.
— matrix is extremely sparse.

 What’s a better representation?
— We only record the 1 positions.

Inverted index

 For each term t, we must store a list of all
documents that contain t.

— ldentify each doc by a docID, a document serial
number

grut3n wengsedfxadrize arrayd ToT[thsr73[1 /74

Caesar m——>[11 2] 4] 516 [16[57132

Calpurnia | ™——>>[2 [31] 54/101

What happens if the word Caesar
is added to document 147

Inverted index

* We need variable-size postings lists

— On disk, a continuous run of postings is normal
and best

— In memory, can use linked lists or variable L,?Oéﬂ?i

(‘ yS
Brutus |men{3ﬁ_ L. % 4L 1] .;1 4511731174

Caesar n——> 7 21 41 516 116/ 57(132
Calpurnia n—— > 2 31] 54/101
- Mo
——
Dictionary Postings

Sorted by doclID (more later on why).

Inverted index construction

Documents to
be indexed

Token stream

Friends, Romans, countrymen.

|

Modified tokens

Inverted index

[Tokenizer }
l Friends Romans Countrymen
Linguistic modules W
1 friend romarn countryman
[Indexer] friend m—— > |21™4—
,l roman m—— > (1 ™2

countryman

m—— > 13 16

Initial stages of text processing

Tokenization

— Cut character sequence into word tokens
* Deal with “John’s”, a state-of-the-art solution

Normalization

— Map text and query term to same form
* You want U.S.A. and USA to match

Stemming

— We may wish different forms of a root to match
* aquthorize, authorization
Stop words

— We may omit very common words (or not)
* the, a, to, of

Indexer steps: Token sequence

-) T doclD

* Sequence of (Modified token, Document ID) pairs. o >
[ejlr:jact
julius
caesar
|
was
_llcilled
;he
capitol
brutus

Doc 1 Doc 2 —

S0
let

it
be

| did enact Julius S Tt i e with with

caesar

Caesar | was killed Caesar. The noble e
" the Capitol; Brutus hath told you T

you
caesar

was
ambitious

NN NMPMRNONNNNODRNNNNNNNNNRNNNN S QA @Q@Q@QQ@QQD QOG- a

Indexer steps: Sort

* Sort by terms Toih doclD| Term dociD
_ ambitious 2

— And then docID did 1 be 2
enact 1 brutus 1

Julius 1 brutus 2

caesar 1 capitol 1

' 1 caesar 1

was 1 caesar 2

Killed 1 caesar 2

A i 1 did 1

the 1 enact 1

. B . capitol 1 hath 1
Core indexing step brutus 1 1
killed 1 [1

me 1 * i 1

SO 2 it 2

let 2 julius 1

it 2 killed 1

be 2 killed 1

with 2 let 2

caesar 2 me 1

the 2 noble 2

noble 2 e} 2

brutus 2 the 1

hath 2 the 2

told 2 told 2

you 2 you 2

caesar 2 was 1

was 2 was 2

ambitious 2 with 2

Indexer steps: Dictionary & Postings

. . term doc. freq. — postings lists
* Multiple term entries Torm | dodlD ambitious [1] —
in a single document A - be [1 - [2
are merged. bruus ! brutes | 2 = %—-
oy . g P capito — [1]
* Split into Dictionary et 1 Caesar | 2 - []-[2
and Postings = : did | 1 - [
i 1 — |1
* Doc. frequency s i onact 11 I
information is added. hath | —p 771 - [
) 1 HE — [1]
:t ; it |1 — E
julius 1 julius | 1 | — i
iled : killed | 1 - 1]
et 2 let | 1 — [2]
Toeble ; me | 1 . 1
SO 2 noble | 1] — |2
i, e 2 o1 - [2
told 2 the | 2 - -
o] 2 told | 1 - [2]
Why frequency? was y ou 11 - 2
Will discuss later. with 2 was | 2 - [1]-[2]
with [1 - [2

Where do we pay in storage?

term doc. freq. — postings lists

ambitious | 1 —
be |1 = [2 -
brutus | 2 — j 5 LIStS Qf
capitol —¥ I doclDs
caesar | 2 =5 I %
did | 1 — 1]

enact | 1 =% |

Ter ms hath | 1 N

:“Bﬁd:. T - [

counts i [1 - [1]
it [1 - [2]
julius — I
killed | 1 - [1]
let | 1 — E
me | 1 = I
noble | 1 — z
so |1 —
the | 2 — I —
told [1 — 2]
you | 1 — Z
was — z 1
Wi | & nters | :

The index we just built

* How do we process a query? <= ourfocus

— Later - what kinds of queries can we process?

Query processing:

* Consider processing the query:
Brutus AND Caesar

— Locate Brutus in the Dictionary;
* Retrieve its postings.

— Locate Caesar in the Dictionary;
* Retrieve its postings.

AND

— “Merge” the two postings (intersect the

2 et

8

—

16

—

32

—

64

—-

128

documel

13

21

Brutus
Caesar

The merge

 Walk through the two postings

simultaneously, in time linear in the total

number of postings entries

$mx

2

T

4

18

B

16

— 32

164

8

Brutus

1

"3

S

" 8

113

—

412
21 |

34

Caesar

If the list lengths are x and y, the merge takes O(x+Y)

operations.

Crucial: postings sorted by doclID.

Phrase queries

* We want to be able to answer queries such as
“stanford university” — as a phrase

* Thus the sentence “I went to university at
Stanford” is not a match.

— The concept of phrase queries has proven easily
understood by users; one of the few “advanced
search” ideas that works

— Many more queries are implicit phrase queries
* For this, it no longer suffices to store only
<term : docs> entries

A first attempt: Biword indexes

Index every consecutive pair of terms in the text
as a phrase

For example the text “Friends, Romans,
Countrymen” would generate the biwords
— friends romans

— romans countrymen

Each of these biwords is now a dictionary term

Two-word phrase query-processing is now
immediate.

Longer phrase queries

* Longer phrases can be processed by breaking
them down

* stanford university palo alto can be broken into
the Boolean query on biwords:

stanford university AND university palo AND palo
alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain
the phrase.

Can have false positives!

Issues for biword indexes

* False positives, as noted before

* Index blowup due to bigger dictionary

— Infeasible for more than biwords, big even for
them

* Biword indexes are not the standard solution
(for all biwords) but can be part of a
compound strategy

Solution 2: Positional indexes

* |In the postings, store, for each term the
position(s) in which tokens of it appear:

<term, number of docs containing term;
docl: positionl, position2 ... ;

doc2: positionl, position2 ... ;

etc.>

Positional index example

<be: 993427:

[:7,18, 33,72, 86, 231;
2: 3, 149;

4: 17, 191, 291, 430, 434;
5:363, 367, ..>

<=

Which of docs 1,2.4.5
could contain “fo be
or not to be’?

* For phrase queries, we use a merge
algorithm recursively at the document level

e But we now need to deal with more than

just equality

Processing a phrase query

e Extract inverted index entries for each distinct
term: to, be, or, not.

* Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

— fo:

e 2:117,74,222,551: 4:8,16,190,429,433; 7:13,23,191: ...
— be:

e 1:17,19: 4:17,191,291,430,434: 5:14,19,101; ...

 Same general method for proximity searches

Proximity queries

e LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
— Again, here, /k means “within k words of”.

* Clearly, positional indexes can be used for
such queries; biword indexes cannot.

* Exercise: Adapt the linear merge of postings to
handle proximity queries. Can you make it
work for any value of k?

— This is a little tricky to do correctly and efficiently
— See Figure 2.12 of /IR

Positional index size

* A positional index expands postings storage
substantially
— Even though indices can be compressed

* Nevertheless, a positional index is now
standardly used because of the power and
usefulness of phrase and proximity queries ...
whether used explicitly or implicitly in a
ranking retrieval system.

Positional index size

* Need an entry for each occurrence, not just

once per document

* Index size depends on average document si@
— Average web page has <1000 terms

— SEC filings, books, even some epic poems ... easily

100,000 terms
» Consideraterm withfrequency 0.1%
Document size Post L :
ostings Positional postings
1000 1 1

100,000

1

100

Rules of thumb

* A positional index is 2—4 as large as a non-
positional index

e Positional index size 35-50% of volume of
original text

— Caveat: all of this holds for “English-like”
languages

Combination schemes

* These two approaches can be profitably
combined

— For particular phrases (“Michael Jackson”, “Britney
Spears”) it is inefficient to keep on merging positional
postings lists

* Even more so for phrases like “The Who”
* Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme

— A typical web query mixture was executed in % of the
time of using just a positional index

— It required 26% more space than having a positional
index alone

len o

s AN Ry digRer caliectiors ©ars ulid she matrx

Invarsed nda Invased 1l
R e e

Invzted W SRrETa A I staEes G et arocesiing Ingcizsk2as: Izker soguirez
= Lrndsanara ada Ik - S4T67 2 PRl bea lsb it b diare © CRrRE T 1S T 3 o
5 TEaPAREELIG e R e, T Y iay
Crarer, i3 Lz prarisd

. e P et s
=K 0 €2 T R § 20T 1
rkw

ki
ppe—t

T]

bt A

i i

Itz s e i Fasheg

1

The Indees we fusk it Cuzy prozessing: SHD

This g

© W hrvagh e b pr g e
A e e e

SnluFan 2: asianal rdes Pasifo s Indes ek
* Lawa o1 e prane be ey

P isalig s ey
WA

FrowiTiy o eies

Fesitoesl indis sive

= 1140 proteg, s, b meek mare
[t A st s Lagp

s £ 2canThe b1 et chrt i
n o s

Covahinatinn sl

e, ror]
I e e s e

etz
e raly s

1

i
ik ke amuian 14

© Bl e b= v e
aanal,

Fankee rerizal

anked Retrieval

ot rap ol Secwmy et hasi l -sebe o cical

Issues with Jaucerd for soering

-
s zere &
[T

- Dy iy

o verwer | A et -

- ek) s
v ;

v e e ok e
Prsh s

T e

rrdocument coant matnces g e woras model

Deeurnznt frequency

ek

Il might

Idf examle, suppeze # - L milier

IThbnE ATt

* s dearuae) Pacswy el n b s o

et 311

. et e
k! Funedepchoscae
4 b Lo

A

L [

ralrsan o

Kepbet amnd e e e
2gn e i

1 it welg g Fira rarking o dozme e o,

2 quen

2.

UL,

e P

=arvert v e

Ranked retrieval

* Thus far, our queries have all been Boolean.
— Documents either match or don’t.

* Good for expert users with precise understanding of
their needs and the collection.

— Also good for applications: Applications can easily
consume 1000s of results.

* Not good for the majority of users.

— Most users incapable of writing Boolean queries (or they
are, but they think it’s too much work).

— Most users don’t want to wade through 1000s of results.
* This is particularly true of web search.

Problem with Boolean search:
feast or famine

* Boolean queries often result in either too few
(=0) or too many (1000s) results.

— Query 1: “standard user dlink 650” = 200,000 hits

— Query 2: “standard user dlink 650 no card found”
— 0 hits

* |t takes a lot of skill to come up with a query
that produces a manageable number of hits.

— AND gives too few; OR gives too many

Ranked retrieval models

* Rather than a set of documents satisfying a query
expression, in ranked retrieval models, the system
returns an ordering over the (top) documents in the
collection with respect to a query

* Free text queries: Rather than a query language of
operators and expressions, the user’s query is just one
or more words in a human language

* |n principle, there are two separate choices here, but
in practice, ranked retrieval models have normally
been associated with free text queries and vice versa

Feast or famine: not a problem in
ranked retrieval

* When a system produces a ranked result set,
large result sets are not an issue

— Indeed, the size of the result set is not an issue
— We just show the top k (= 10) results
— We don’t overwhelm the user

— Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

e We wish to return in order the documents
most likely to be useful to the searcher

* How can we rank-order the documents in the
collection with respect to a query?

* Assign a score —say in [0, 1] —to each
document

 This score measures how well document and
query “match”.

Query-document matching scores

We need a way of assigning a score to a
query/document pair

Let’s start with a one-term query

If the query term does not occur in the
document: score should be O

The more frequent the query term in the
document, the higher the score (should be)

We will look at a number of alternatives for
this

Take 1: Jaccard coefficient

A commonly used measure of overlap of two
sets A and B is the Jaccard coefficient

jaccard(A,B)=|AnB|/|A U B
jaccard(A,A) =1
jaccard(A,B)=0ifAnB=0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

What is the query-document match score that
the Jaccard coefficient computes for each of
the two documents below?

Query: ides of march

Document 1: caesar died in march

Document 2: the long march

Issues with Jaccard for scoring

* It doesn’t consider term frequency (how many
times a term occurs in a document)

— Rare terms in a collection are more informative than
frequent terms

— Jaccard doesn’t consider this information

* We need a more sophisticated way of
normalizing for length

— Later in this lecture, we'll usepo N B| /\/| AUB|
...instead of |[A N B|/|A U B| (Jaccard) for length
normalization.

Antony
Brutus
Caesar
Calpurnia
Cleopatra
mercy

worser

Recall: Binary term-document
incidence matrix

Antony and Cleopatra
1

1
1
0
1
1
1

Julius Caesar

1

The Tempest
0

O Y = T = T = T - |

Hamlet

0

1
1
0
0
1
1

Othello
0

0
1
0
0
1
1

Macbeth

O = O O = O =

Each document is represented by a binary vector € {0,1}V

Term-document count matrices

e Consider the number of occurrences of a term
in a document:

— Each document is a count vector in N!VI: a column
below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 167 73 0 0 0 0
Brutus 4 167 0 1 0 0
Caesar 232 227 0 2 1 1
Calpumia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0
mercy 2 3 5 5 1
worser 2 0 1 1 1 0

Bag of words model

Vector representation doesn’t consider the ordering of
words in a document

John is quicker than Mary and Mary is quicker than
John have the same vectors

This is called the bag of words model.
In a sense, this is a step back: The positional index was
able to distinguish these two documents

— We will look at “recovering” positional information later
on

— For now: bag of words model

Term frequency tf

The term frequency tf, , of term t in document d'is
defined as the number of times that t occurs in d.

We want to use tf when computing query-document
match scores. But how?
Raw term frequency is not what we want:

— A document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the term.

— But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.

Log-frequency weighting

The log frequency weight of term tin d is

[1+]1og,, tf,,, iftf,>0
= : ,
el 0 otherwise

050151213 10 2, 1000 = 4. etc.

Score for a document-query pair: sum over terms
tin both g and d:

Score
- E@M(l +logtf,)

The score is O if none of the query terms is
present in the document.

Document frequency

Rare terms are more informative than frequent
terms

— Recall stop words

Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

A document containing this term is very likely to
be relevant to the query arachnocentric

—> We want a high weight for rare terms like
arachnocentric.

Document frequency, continued

Frequent terms are less informative than rare terms

Consider a query term that is frequent in the collection
(e.g., high, increase, line)

A document containing such a term is more likely to be
relevant than a document that doesn’t

But it’s not a sure indicator of relevance.

— For frequent terms, we want positive weights for
words like high, increase, and line

But lower weights than for rare terms.
We will use document frequency (df) to capture this.

idf weight

* df, is the document frequency of t: the number of
documents that contain t

— df, is an inverse measure of the informativeness of t
—df, =N

 We define the idf (inverse document frequency)

oftby jdf =log,, (N/df)

— We use log (N/df) instead of N/df, to “dampen” the
effect of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N =1 million

calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

1df, = log,, (NV/dt,)

There is one idf value for each term tin a collection.

Effect of idf on ranking

* Question: Does idf have an effect on ranking
for one-term queries, like

— iPhone

 idf has no effect on ranking one term queries

— idf affects the ranking of documents for queries
with at least two terms

— For the query capricious person, idf weighting
makes occurrences of capricious count for much
more in the final document ranking than
occurrences of person.

Collection vs. Document frequency

* The collection frequency of t is the number
of occurrences of t in the collection,

counting multiple occurrences.

* Example:
m Collection frequency
insurance 10440 3997
try 10422 8760

* Which word is a better search term (and
should get a higher weight)?

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight
and its idf weight.

W= (1+ logtft,d) xlog,,(/V/dt,)

Best known weighting scheme in information retrieval
— Note: the “-” in tf-idf is a hyphen, not a minus sign!
— Alternative names: tf.idf, tf x idf

Increases with the number of occurrences within a
document

Increases with the rarity of the term in the collection

Final ranking of documents for a query

Score(g,d) = E tt.adf, ,

tEgnd

Binary - count - weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpumia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV

szried reiricvn

Term dacuricrT cours matdecs

- o

willy fecrzhess s
zaser faving

837 of sneas madel

o e ok e e ol

Azrsed rzrizal models

T2t

e v ey
kot B
[rares

P

hked Retrieval

Soorng e dhe brls of ooked retfeval Guers-teeament maieing seares Take 1: Joczard cocffioent
- b, o)

laccang coetfizient Grotog eanmple
= Ao e 3w AT 130 D Lyl - U T e
arenpr the el el ne g r e h
I " - Leevmba g U e rwn AL e 2HzaT
askviet

BT R]

Gecament froouenay, covinucd

feuEaE, SppeE i 1l

g
Thaszeas T ez ol 1o cnwm uera «
prr P

It welgating

Vector Space Model

W ek et 4 e S g w1

ves weth oo for coodng

Elfccs ot kit anraniing

sty

kg ks
EPY PR

= pme ke
e A

B T T

Cellzthior .

Cocument raguznzy

B AT
E SRR

ST
S s e s e

+ by s b Eerar e e
3 Hehorwihe]?

theikigera Hepor:

s e e

P S ——
T v ek b

SRR

P

Documents as vectors

Now we have a |V |-dimensional vector space
Terms are axes of the space
Documents are points or vectors in this space

Very high-dimensional: tens of millions of
dimensions when you apply this to a web
search engine

These are very sparse vectors — most entries
are zero

Queries as vectors

Key idea 1: Do the same for queries: represent
them as vectors in the space

Key idea 2: Rank documents according to their
proximity to the query in this space

proximity = similarity of vectors
proximity = inverse of distance

Recall: We do this because we want to get away
from the you’re-either-in-or-out Boolean model

Instead: rank more relevant documents higher
than less relevant documents

Formalizing vector space proximity

First cut: distance between two points

— (= distance between the end points of the two
vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

... because Euclidean distance is large for
vectors of different lengths.

Why distance is a bad idea

The Euclidean GOSSIP d»

14

distance Between ¢

and d_:is large even
though the

distribution of terms
in the query a’and the
distribution of

terms in the
document ?7 are

Fa |
\..,

%

/
/ 3

JEALOUS

very similar.

Use angle instead of distance

Thought experiment: take a document d and
append it to itself. Call this document d'.

“Semantically” d and d’ have the same content

The Euclidean distance between the two
documents can be quite large

The angle between the two documents is O,
corresponding to maximal similarity.

Key idea: Rank documents according to angle
with query.

From angles to cosines

* The following two notions are equivalent.

— Rank documents in decreasing order of the angle
between query and document

— Rank documents in increasing order of
cosine(query,document)

* Cosine is a monotonically decreasing function
for the interval [0°, 180°]

From angles to cosines

50 0o 150 200 250 300 350

-1}

But how — and why — should we be computing cosines?

Length normalization

* Avector can be (length-) normalized by dividing
each of its components by its length — for this we

use the L, norm:
= 2
. = 2

* Dividing a vector by its L, norm makes it a unit
(length) vector (on surface of unit hypersphere)

* Effect on the two documents d and d’ (d
appended to itself) from earlier slide: they have
identical vectors after length-normalization.

— Long and short documents now have comparable
weights

cosine(query,document)

Dot product Unit vectors

\ = J ‘—’ 4

oo ged g ,d R
D T a5

g. is the tf-idf weight of term jin the query
d. is the tf-idf weight of term jin the document

cos(@.d) is the cosine similarity of 7and 4 ..
equivalently, the cosine of the angle between ﬁ’and a.

Cosine for length-normalized vectors

* For length-normalized vectors, cosine
similarity is simply the dot product (or scalar

product):
~+ v

cos@d)=G=d=Y, qd,

for g, d length-normalized.

11

Cosine similarity illustrated

POOR
11 V(dl)
~v(q)
N V(d2'
3 / \
\
/ \
/ \
\
\
\—b
0 /_.._—--r V(d?,)
> RICH

Cosine similarity amongst 3 documents

How similar are
the novels

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

e ——T e

affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.

3 documents example contd.

Log frequency weighting After length normalization

term | Sas | PaP | WH Ml term | SaS_| PaP | WH

affection 3.06 2.76 2.30 affection 0.789 0.832 0.524

jealous 2.00 1.85 204 jealous 0.515 D 565 0.465

gossip 1.30 0 1.78 gossip 0.335 0 0.405

wuthering 0 0 268 wuthering 0 0 0.588
cos(SaS,PaP) =

0.789x 0.832 +0.515 x0.555 +0.335 x 0.0+ 0.0x0.0=0.94
cos(SaS,WH) = 0.79
cos(PaP,WH) = 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

